芯片行业是一个高投入、高风险、慢回报的行业。芯片研发周期非常长,从立项到上市通常需要两年左右时间。作为创业企业,特别是从事算法的企业,如果自己独立研发芯片,在时间和资金方面都面临巨大压力,其中最重要的原因是芯片成本高,对错误零容忍。
与软件可以修正和快速迭代不同,据千讯咨询发布的《中国芯片市场前景调查分析报告》显示,芯片的迭代周期会很长。如果已经流片,纠正一个错误可能需要半年以后花几百万美元再去流一次片。你得有非常强大的心理素质、极其严谨的工作作风,以及对任何事情宁可错杀一千,不能漏掉一个的态度去做,不仅是要一个这样的人,而且是需要一个这样的团队,才能把这个事做好。
这是芯片行业本身具有的特点,但目前AI算法尚未固定,如果直接做专用芯片无疑又有新的风险。传统芯片公司在设计IP和做一个芯片之前,已经确定了目标客户,“如果你做一个很大的决定的话,要有一个头部的大客户一起合作。相当于芯片还没出来,你已经确定谁会用它,怎么用它或者对一个市场研究得很透”。但这是传统的方式,AI芯片则有所不同,他指出,“现在的AI落地还在早期,你没有办法事先就已经知道谁一定会用你,这个时候是带有一定风险的,也需要考验一定的眼光。如果你要盯着有量的市场去做AI芯片,首先这样的判断也有可能错,第二你在做出来的时候已经晚了。等你看到有量再去做,有一些预判的公司已经做出来,在那个市场里面等着了。”
该公司于2016年初确定布局AI芯片,而在当时该款芯片也没有明确的客户。当时为什么敢做这个决策?我们认为这些算法底层的架构都基于神经网络来做。不管你的形态怎么变,那个核心不太会变。另一方面,没有产品也很难和客户深入接触,“去跟客户聊过,但是通常来说,当你还没有一个东西的时候,你跟客户去聊需求的时候,通常来说聊不到很深入。上市半年后,目前该芯片已经有百万级的订单。