当前,反欺诈领域的技术已经进入第三代。传统的第一代依据规则系统判定,是人工制定规则,第二代在第一代规则的基础上,引入更多信号源,如黑白名单、设备指纹等;当前进入第三代,是以人工智能为核心。在第一代中,又划分为监督学习算法和无监督学习算法两个分支,两者的核心在于是否有大量的训练样本(数据)进行训练,两者的算法完全不同。
据了解,国际上大多采用监督学习算法事先对大量数据进行归类和扫描,也是一种“打标签”的方式。但由于欺诈行为并非一成不变,而是动态演变的,监督学习算法则力不从心。而无监督学习算法也是建立在对大量数据的学习和训练中,但学习的不是数据源,而是针对数据的行为动态作出规则判断。
据千讯咨询发布的《中国人工智能市场前景调查分析报告》显示,无监督学习算法是人工智能相对聚焦的技术领域,应用范围也聚焦,多用在银行、保险、证券等金融领域以及互联网领域、拥有大量线上用户的企业。基于无监督学习算法的产品和解决方案可以针对个体欺诈和分布式的群体欺诈,为这些企业提供最先进的反欺诈检测服务,确保用户的真实性。
当然,在实际应用中,两者不是割裂的,而是相融合的。很多解决方案中,这两者的算法均有,都是建立在大数据平台之上。不过相比较当前网络欺诈的趋势而言,无监督学习算法更符合这样的场景。