千讯咨询发布的中国互联网市场发展研究及投资前景报告显示,2019年要推动传统产业改造提升,特别是要打造工业互联网平台,拓展“智能+”,为制造业转型升级赋能。这也是“智能+”作为一个概念,事实上,2017年11月份以来,加快“互联网、大数据、人工智能等新一代信息技术与实体经济的深度融合”已成为数字产业化与产业数字化共同的主题。“智能+”的提出,意味着智能化与制造业转型升级的契合度更为凸显,再次确立新一代信息技术赋能实体经济的重要作用。
关于工业智能,目前业界还没有完整的定义,一般的理解,就是工业+人工智能,但这一界定包含的东西太多——不仅在对象上有高端制造、智能工厂、数字化车间、自动化生产线等,领域更是包罗万象,有机器视听觉、复杂环境识别、智能语音处理、状态信息实时感知、自适应控制、智能决策控制以及新型人机交互等等。在发展工业互联网的大背景下,企业如何找准合适的工业智能,并与工业互联网结合起来,解决场景痛点,成为数字化、网络化、智能化落地的重要挑战。
工业智能的3+4体系架构
在AT分析技术中,模型应该被合理迭代开发、逐步成长,这个模型生命周期的管控,需要跑在PT也就是平台技术上,当然,所有的算法需要数据,数据如何有效处理并传到平台端,这就需要基于DT技术,而这一系列的循环,最终和OT结合,产生一个又一个工业APP。
工业智能需要“人工+机器智能”。人工智能推动企业向智能制造与智能运营发展,但人工智能需要与大数据、移动互联网、物联网及云计算等的协同融合,而且需要与企业运营技术紧密结合。机器学习着重于通过有限的输入数据流来了解环境,而人类则能同时洞悉各种不同的环境特征。基于大数据导出的数学模型未必能优于制造业基于长期积累对建模对象客观规律的理解所得到的机理模型。
工业智能需要关注生产系统。工业生产存在着诸多数据孤岛、信息孤岛与系统孤岛,由于现有的系统有很大的局限性,生产过程中常见突发意外时无法实时动态优化资源等问题,并且很多企业实现自动化却损失了产能。企业要使用工业智能的手段赋能现有生产过程,补足对时间敏感性要求高,以及流程链、供应链复杂难以评估的能力。实现企业数据智能推动企业转型,需要构建以下几方面的关键能力:一是全域数据融合,包含生产经营数据、ERP、CRM等系统数据,及宏观经济、用户评价等;二是工业和人工智能的结合,通过数据进一步优化专家经验;三是通过微服务架构,实现敏捷智能闭环价值。
显然,不同的视角和定位,让工业智能呈现出多维特征。那么,天泽智云的工业智能产品矩阵到底是什么?其背后的理念又是什么?是如何解决企业场景痛点问题的?
人工智能与数据的相互依存关系深入人心。人工智能落地的基础是数据,核心是模型的积累。但在现实中,用户往往并不买账。原因在于,一方面用户已经形成解决问题的传统机制,另一方面,由于信息孤岛的问题、数据质量的问题、数据标签的问题等等,使初期阶段的模型很难解决客户问题,基于这种情况,客户往往对模型持怀疑态度。数据不应该是工业智能落地的一个起点,它的起点应该是用户的痛点或者有行业属性的工业场景。也就是说,不是所有的场景都可以用工业智能解决,也不是所有的数据都对工业建模有用。建模需要利用领域知识,同时一定对模型不断迭代,让它接近完美,这就要求对模型做全生命周期管理。
工业智能=算法+工程化
但工业最核心的不是数据,而是模型,数据是客户的,真正有价值的是模型,模型的积累会颠覆很多商业模式,因为模型驱动APP,APP又驱动商业模式。所以,工业场景、工业知识的积累,既是一个漫长的过程,也是一条必经之路。所以,算法不是唯一,仅靠一个光鲜的算法不可能做成一个好的、伟大的企业。工业一定是系统工程。通过形成一个整建制的系统化、工程化的队伍,才能把算法的力量通过工程化能力变成产品交付出去。但这个过程很漫长。
从互联网+到智能+
对于工业智能与工业互联网的关系,天泽智云高级副总裁谢炯说:合作,从赋能物联网、赋能平台、赋能组织和赋能人才等方面,进行技术体系和能力的提升。只有与合作伙伴携手并进,才能在行业纵深创造并落地贴合业务的工业智能应用。
2018年以来,工业互联网蓬勃兴起,并以网络、平台、安全三大要素囊括了工业数字化、网络化、智能化的所有解决之道,成为当前网络强国和制造强国的主要抓手之一。“工欲善其事,必先利其器。器欲尽其能,必先得其法。从互联网+到智能+,我们相信将+出一个新兴的改革之路,尤其针对制造业。我们坚信中国要走向强国,这是必经之路。”
相关研究报告
互联网项目可行性研究报告
中国互联网行业发展趋势分析预测报告
中国互联网行业发展研究报告